

The Botswana "Ya Tsie" HIV combination prevention project: what did we learn?

HOPE Conference, 10 December 2019

Shahin Lockman MD, MSc

Brigham and Women's Hospital and Harvard T.H. Chan School of Public Health

No disclosures

Collaborating institutions: HSPH, Botswana-Harvard AIDS Institute Partnership, US CDC, Botswana Ministry of Health

Funded by PEPFAR / Office of the Global AIDS Coordinator (OGAC

Sponsored through the US CDC

ESTABLISHED IN 1812

AUGUST 11, 2011

VOL. 365 NO. 6

Prevention of HIV-1 Infection with Early Antiretroviral Therapy

Myron S. Cohen, M.D., Ying Q. Chen, Ph.D., Marybeth McCauley, M.P.H., Theresa Gamble, Ph.D., Mina C. Hosseinipour, M.D., Nagalingeswaran Kumarasamy, M.B., B.S., James G. Hakim, M.D., Johnstone Kumwenda, F.R.C.P., Beatriz Grinsztejn, M.D., Jose H.S. Pilotto, M.D., Sheela V. Godbole, M.D., Sanjay Mehendale, M.D., Suwat Chariyalertsak, M.D., Breno R. Santos, M.D., Kenneth H. Mayer, M.D., Irving F. Hoffman, P.A., Susan H. Eshleman, M.D., Estelle Piwowar-Manning, M.T., Lei Wang, Ph.D., Joseph Makhema, F.R.C.P., Lisa A. Mills, M.D., Guy de Bruyn, M.B., B.Ch., Ian Sanne, M.B., B.Ch., Joseph Eron, M.D., Joel Gallant, M.D., Diane Havlir, M.D., Susan Swindells, M.B., B.S., Heather Ribaudo, Ph.D., Vanessa Elharrar, M.D., David Burns, M.D., Taha E. Taha, M.B., B.S., Karin Nielsen-Saines, M.D., David Celentano, Sc.D., Max Essex, D.V.M., and Thomas R. Fleming, Ph.D., for the HPTN 052 Study Team*

N ENGLJ MED 365;6 NEJM.ORG AUGUST 11, 2011

HPTN 052 randomized trial in sero-discordant partners: 96% reduction in risk of HIV transmission if infected partner on antiretroviral treatment

BREAKTHROUGH OF THE YEAR

Science

HIV Treatment as Prevention

23 December 2011 | \$10

PARTNER 2 study: 972 gay couples and 516 heterosexual couples reported total **76,991 condomless** sex acts: zero transmissions between partners (15 non-phylogenetically-linked) *Rodger IAS Amsterdam 2018*

Despite remarkable increases in the proportion of HIV-positive persons receiving ART...

...Insufficient progress on reducing the number of new HIV infections:

Number of new HIV infections, global, 199@2017 and 2020 target

UNAIDS Targets (2014)

- Mathematical modeling: achieving 90-90-90 targets by 2020 would lead to "end of the HIV epidemic" by 2030 (in combination with PrEP, MC, other?)
 - "Virtual elimination" commonly defined as HIV incidence <0.1%
- Multiple optimistic assumptions; not supported by 6 of 9 other models *(Eaton)*

Why even do a trial of universal HIV test - and-treat (UTT)?

- Determine whether it is <u>feasible and acceptable</u> to scale up the interventions to a level that will have impact
 - > Need high coverage; "last 20%" often harder to reach than "first 80%"
 - > HIV-positive persons who feel well may not want to take ART
 - Acute infection and sexual networks could undermine effectiveness of treatment as prevention
- > Assess the magnitude of impact on HIV incidence
- > Understand the most effective approaches to implementation
- > Evaluate cost-effectiveness
- Understand and quantify <u>potential negative effects</u> (e.g., sexual risk dis-inhibition, stigma, drug resistance)

The HIV "treatment cascade" in Africa ~6 years ago (when TasP trials started)

ABBREVIATED HIV TREATMENT CASCADE FOR ADULTS IN SUB-SAHARAN AFRICA AGED 15 YEARS OR MORE, 2013

Botswana

- Stable democracy since 1966
- Population ~2.2 million, upper middle income
- Free health care and education for citizens
 - ~20% unemployment
 - 3rd highest Gini (inequality) index globally (2009)
- HIV prevalence = 20% in adults (2018)

Botswana: life expectancy at birth

fred.stlouisfed.org

Primary aims of the Ya Tsie (BCPP) study

Cluster-randomized trial designed to:

- Determine whether a package of interventions (primarily universal test and treat) significantly reduces population-level, cumulative HIV incidence in adults in 30 Botswana communities
- > Estimate population-level uptake of the intervention
- > Evaluate cost-effectiveness of the intervention
- Also: explore viral transmission patterns using viral phylogenetic methods

Ya Tsie Study Population

- 30 communities, each with average population 6,000
- Total population ~180,800 (nearly 10% of entire Botswana population)
- Age-eligible (16-64) ~105,000

Ya Tsie Study Interventions

> Interventions in combination prevention communities

- Community mobilization
- > Universal HIV testing (aim: test all residents 16-64 years)
- > Linkage to care support
- > Universal ART as of June 2016 (previously, expanded ART for residents with HIV-1 RNA ≥10,000 depending on CD4)
 - > Also as of June 2016: same-day ART start
- > Enhanced male circumcision (MC) services
- > In standard of care communities:
 - > ART for persons with CD4≤350 or WHO III/IV (or pregnant) until June 2016, when moved to universal ART

Ya Tsie Main Study Endpoints/Outcomes

- > HIV incidence measured via longitudinal follow-up of community-based HIV Incidence Cohort
 - > >9,000 HIV-negative adult residents of random ~20%
 sample of community plots/households, all 30 communities
 - > Primary study endpoint = cumulative HIV incidence over
 ~30 months (baseline + 2 follow-up surveys)
- **"Coverage" parameters (intervention uptake)** and behavior measured in annual household surveys, end of study survey, and program monitoring data (HIV+ and HIV-)
- Viral phylogenetics in <u>all HIV-infected survey participants</u> and all consenting HIV+ persons attending clinics in intervention communities

Ya Tsie Study Design Schematic

Ya Tsie: Started With Community Engagement

Ya Tsie Plot Mapping and Electronic Data Captur

- GPS coordinates to map and confirm each plot in all 30 communities
- Household/individual data linked to plot
- 73,700 plots mapped in 30 communities
 - Random 20% sample selected for household survey / incidence cohort
 - Maps also used by HTC campaigns

Screen shot of an electronic data capture survey

Botswana Combination Prevention Project(14)@Тобые, мевас accumentation / Change password Home > Admininistration > Site Admin > Bcpp_subject > Residency & Mobility > Add Residency & Mobility

Add Residency & Mobility

Instructions: Read to Participant: To start, I will be asking you some questions about yourself, your living situation, a about the people that you live with. Your answers are very important to our research and will help us understand how develop better health programs in your community. Some of these questions may be embarrassing and make you fee uncomfortable; however, it is really important that you give the most honest answer that you can. Please remember to fyour answers are confidential. If you do not wish to answer, you can skip any question.

Required questions are in bold. When all required data has been entered click SAVE to return to the dashboard or SA to go to the next form (if available). Additional questions may be required or may need to be corrected when you atta save.

. Subject visit: 🔤 🕂	
. How long have you lived in this community?:	
OLess than 6 months	
O 6 months to 12 months	
🔘 1 to 5 years	
OMore than 5 years	
O Don't want to answer	
. In the past 12 months, have you typically spent 14 or more nights per month in this ommunity? :	
Yes	
○ No	

Field teams visited households

Mobile project van (and lab)

Findings from Baseline (pre-intervention) household survey

In 20% cohort, all 30 communities

How close was Botswana to achieving UNAIDS "90 90 90" targets at study baseline?

At study baseline in Botswana communities:

Measured in 12,610 participants of the 20% cohort (8,974 HIV-negative, 3,596 [29%] HIV-positive)

Slide from Scott Dryden-Peterson

Ya Tsie: HIV testing, linkage to care, and antiretroviral treatment (ART) interventions and their uptake in the intervention arm

Based on programmatic/intervention data; many slidesin this section shared by Drs. Jan Moore, Pam Bachanas, Lisa Block and others (CDC)

HIV testing intervention: universal HTC

- Initial (one-time) campaign (~2 months per community) to test all adult residents not documented to be living with HIV (PLHIV)
 - > Home-based testing: every community household visited and enumerated
 - Mobile testing: tents in areas with high traffic, e.g. markets, transport hubs, and adjacent to ongoing home-based testing
 - > Nights, weekends, holidays, multiple visits to reach all eligible
- After initial universal testing round, employed testing targeted at reaching primarily men and youth
 - In places where men and youth gathered or worked, e.g. workplaces, markets, shebeens/bars, cattle posts/farms
 - > Provided HIV testing at community events and multi-disease health fairs

Percentage of Newly -Identified HIV -Positive Persons Among all Persons Tested by Sex, Age & Testing Venue

	Total Females	Total Males	Females 16-24	Females 25-34	Females 35-64	Males 16-24	Males 25-34	Males 35-64	
Tested in Home N=22,613	13,275	9,338	4,317	3,550	5,408	3,443	2,659	3,236	 Tested fewer people in homes but identified
HIV+ in Home N=1,105 (4.9%)	608 (4.6%)	497 (5.3%)	122 (2.8%)	190 (5.4%)	296 (5.5%)	48 (1.4%)	157 (5.9%)	292 (9.0%)	 Cost of home- based testing: \$53
Tested in Mobile N=26,235	11,767	14,468	5,131	3,703	2,933	5,111	5,171	4,186	per test, \$758 per positive test
HIV+ in Mobile N=935 (3.6%)	455 (3.9%)	480 (3.3%)	155 (3.0%)	162 (4.4%)	138 (4.7%)	51 (1.0%)	196 (3.8%)	233 (5.6%)	testing: \$34 per test, \$572 per positive test

Yo tsie

Increases in Population-Level Knowledge of HIV-Positive Status from Study Start to Study End by Sex and Age

STUDY START STUDY END

Key take home points from Ya Tsie HIV testing intervention

- Of the 61,655 eligible adults assessed, 13,328 HIV-positive individual were identified through Ya Tsie (93% of the estimated 14,270 PLHIV in the communities)
- Knowledge of HIV status increased by 25% during study
 - Greater increases in men (37%) than women (19%), and in youth aged16-24 (77%) than older age groups (21%)
- Although more men tested through mobile/outreach, higher rates of newly -diagnosed HIV-positive men were found with home -based testing (included nights, weekends, mult. visits)
- Over 40% of PWLH referred to start ART already knew their positive HIV status but were not yet on ART
- Even when HIV testing coverage is already high, additional gains can be made using a multi-modality, accessible HIV testing strategy to reach different sub-populations who are being missed by non-targeted program activities 25

Ya Tsie Linkage Interventions

- Persons referred to start ART were given appointments at local HIV clinics
- SMS appointment reminders
- Persons not attending clinic appointment were **traced** by community linkage to care manager (telephone calls, home visits)
 - Individuals traced through cascade using national unique identifier (Omang)
- Those not linking within 90 days were sought in the national electronic medical records system to **determine if linked to HIV clinic in different community**

Ya Tsie: linkage to care/ART initiation among PLHIV referred to local clinics, by age and gender

	TOTAL	Women > 25	Men > 25	Youth (16-24)
HIV+ Not on ART Referred to Treatment	3,629	1,781	1,310	538
Linked to care and started ART	3,356 (93%)	1,696 (95%)	1,177 (90%)	483 (90%)

- 93% of PLWH who were referred linked to care and started ART
- Men > 25 and youth had lower rates of linkage than women >25, but still at 90%

Detail on linkage to care/ART

Linkage Outcome	Result	Intervention
Kept 1 st appointment at community clinic	1,764 linked (49%)	 Clinic appointment given SMS reminder
Linked later to community clinic	995 linked (27%)	 Traced individuals by telephone or home visit Tracked individuals in EMR system
Linked to clinic outside community	608 (17%)	 Traced individuals by telephone or home visit; verified attendance/treatment status in outside clinics Tracked individuals in EMR system
Never Linked	268 (7%) LTFU; no evidence of clinic activity after intake	 Traced individuals by telephone or home visit Tracked individuals in EMR system

Time to linkage at local clinic (among PLHIV linking)

Nearly 90% of those who linked did so by 3 months after referral

When Botswana moved to "Treat All" in June 2016, Ya Tsie moved to "Fast Track ART Initiation" in the intervention arm

- Adherence counseling initiated in community after positive HIV test
- ART initiated at first clinic visit for stable patients
- Labs drawn at first clinic visit but ART started before results available
- Persons recalled to clinic if abnormal lab results returned

More rapid linkage/ART start, and equally good retention/viral suppression, in era of fast -track ART

One year after starting ART, 91% of those who linked in the standard ART period were in care and had VL<400 cp/ml, vs. 92% in rapid ART period

Time from		Pre Rapid ART (1717)	Post Rapid ART (800)			
linkage	Number	Cumulative probability of ART initiation (95% CI)	Number	Cumulative probability of ART initiation (95% CI)		
1 day	163	9.5% (8.2-11.0)	457	57.1% (53.7-60.6)		
1 week	276	16.1% (14.4-17.9)	589	73.7% (70.6-76.7)		
2 weeks	499	29.1% (27.0-31.3)	641	80.3% (77.4-83.0)		
1 month	839	48.9% (46.5-51.3)	678	84.9% (82.4-87.3)		
3 months	1208	70.4% (68.2-72.5)	711	89.2% (86.9-91.2)		
1 vear	1532	89.2% (87.7-90.6)	744	93.5% (91.6-95.1)		

HIV Care Cascade Among HIV-Infected Adults in 15 Intervention Communities

- If missing VL=failure, then 95% (not 98%) of those on ART had viral suppression
 - Overall, of the total estimated 14,270 PLHIV, ~85% had VL suppression by study end

Data source: programmatic data

* Denominator (n=13,124) reflects people alive at study end

**Denominator (n=11,954) reflects people retained on ART, alive at study end and have VL result

Ya Tsie: change in 90 -90-90 coverage over time, based on data from 20% cohort (baseline) and 80% population (end)

Conclusions

- Universal testing with multi-modal approach effectively reaches important population segments and is essential for UTT
- Tracking & tracing procedures with dedicated staff and data systems can reduce loss to follow-up from 50% to <10%
- Treatment offered on same day as linkage can reduce time to ART start by >50%
- Possible to reach equivalent of 95-95-95 coverage even in highprevalence, resource-constrained countries

Note: uptake of MC was higher in the intervention arm, but low overall (data not shown)

Ya Tsie: HIV incidence by randomized study arm

Ya Tsie: HIV Incidence Cohort

- 8,974 HIV-uninfected individuals in incidence cohort (4,487/arm)
- Median duration of follow-up = **29 months**
- 95-96% of participants in each arm **re-tested for HIV** during at least 1 follow-up visit

Primary Results: HIV Incidence in the Intervention vs. Standard of Care Arms

Annual HIV incidence: 0.59% in the intervention arm versus 0.92% in the standard of care arm

Analysis	Incidenc e Ratio	95% CI	2-sided p-value
Primary analysis, unadjusted (permutation test, pair-specific Cox PHM)	0.69		0.09
Analysis to obtain 95%, unadjusted CI (pair-stratified Cox PHM)	0.65	0.46-0.90	0.01
			~ ~ -
Primary analysis, adjusted*	0.63		0.05
Analysis to obtain 95% CI, adjusted*	0.70	0.50-0.98	0.04

* Covariates in adjusted analyses were: sex, age, education, marital status, concurrent sexual partners, and alcohol during last sex

 Results of main analyses were consistent, and indicated
 >30%

 reduction in HIV incidence
 associated with intervention
 (note: impact likely

 substantially blunted by "mixing" / infection acquired from outside intervention communities)
 37

Ya Tsie: HIV incidence lower in intervention arm, but quite variable by community

Population HIV incidence in intervention vs. standard of care arms a

Cumulative Probability of Seroconversion

0.00

+ Censored

0.0

Π

to 1.5%

1.5%

Ya Tsie: impact of intervention varied by group

- Greater apparent impact of intervention on HIV incidence in men (and variable by age, region)
- > HIV incidence remained higher in women than in men (and in 16-24 year olds)

Subgroup	Intervention	Standard Care	re Incidence Ratio (95% CI)		
	no. of events/perso (event rate/10	on-yr of follow-up 00 person-yr)			
Sex					
Female	49/5911 (0.83)	70/6010 (1.16)	⊢	0.71 (0.5-1.0)	
Male	8/3757 (0.21)	20/3791 (0.53)	► • • • • • • • • • • • • • • • • • • •	0.40 (0.2-0.9)	
Age					
16-24 yr	25/3238 (0.77)	40/3420 (1.17)	⊢−−− +1	0.66 (0.4-1.1)	
25-34 yr	17/2818 (0.60)	37/2826 (1.31)		0.46 (0.3-0.8)	
35-64 yr	15/3611 (0.42)	13/3556 (0.37)	F	1.14 (0.5–2.4)	
Region					
Southern	19/3368 (0.56)	27/4068 (0.66)	⊢I	0.84 (0.5-1.5)	
Central	16/2384 (0.67)	26/2388 (1.09)	F	0.62 (0.3-1.2)	
Northern	22/3915 (0.56)	37/3345 (1.11)	H	0.51 (0.3-0.9)	
			0.15 0.25 0.50 1.00 2.00 3.00		
			Intervention Standard Care		

Makhema et al

Lightning rounds: selected additional Ya Tsie results

Mortality remains higher in persons with treated HIV

- Persons with viral suppression on treatment for <a>>10 years were still <a>>3 times more likely to die than persons without HIV (BCPP study cohort, adjusted analyses)
- Much of this mortality due to non-communicable diseases

Advanced HIV and the Care Cascade

- Twenty percent of HIV-infected individuals not on ART had advanced HIV-disease (CD4 <200)
- Those with advanced disease had lower rates of linkage/ART initiation and retention and higher mortality (2.3% vs 1.1%; p=0.05) compared to healthier PLHIV.
- Highlight the need to <u>focus efforts on earlier identification of</u> <u>HIV-infected persons</u>

Lebelonyane CROI 2018 #887

Association Between Being More Mobile, and Having Detectable HIV -1 RNA

- › More mobile HIV-infected individuals were significantly <u>more</u> <u>likely to be viremic</u>
 - Lower proportions of more mobile PLHIV knew their HIV status (P=0.001) or were on ART (P=0.02) compared with non-mobile
- Health systems needs to better accommodate more mobile populations, to achieve high ART/viral suppression targets

High Prevalence of Multiple Concurrent Sexual Partnerships (MCP)

- Despite efforts to reduce MCP behaviors, MCPs were still common (reported by 31% of sexually active individuals), esp. men
- After adjusting for age and gender, reporting MCP was significantly associated with being employed, transactional sex, intergenerational sex, and high alcohol consumption

Self-Reported Risky Sexual Practices Among Adolescents and Young Adults

- Females were more likely to report inconsistent condom use, intergenerational sex, and transactional sex
- > Males more likely to report early sexual debut and alcohol use with sex
- Economic stress was strongly associated with increased sexual risk behavior in females
- Programs targeting episodic risk, particularly around alcohol, could be more effective in young males

High Prevalence of Hypertension in HIV-Infected and –Uninfected Adults

- Nearly one in three adults (out of 2,441 assessed in population-based cohort) had hypertension (previously diagnosed or current)
 - > HIV-infected individuals were less likely to meet the definition of hypertension than HIV-uninfected
- While 90% of individuals with previously-diagnosed hypertension were receiving antihypertensive medications, one-half of those with hypertension had not previously been diagnosed

Prevalence of NRTI, NNRTI, PI, INSTI Drug Resistance Mutations, 2013 -2015

- > Using long-range genotyping, found low prevalence of NRTI-(2.9%), NNRTI- (3.2%) and PI (1.2%) drug resistance mutations in 2,343 participants
 - > 68% of those tested were on ART, & 96% of those on ART had VL<400
- > Prevalence of DRM to any of these 3 drug classes = 5.8%
- Individuals on ART with detectable virus (n=63) had higher prevalence of NRTI (22%) and NNRTI (24%) mutations
- > Only 47 (2%) of 2,241 participants had INSTI DRM

Undisclosed Antiretroviral Drug Use

 Among 134 participants with HIV-1 RNA < 400 copies/mL but who reported not being on ART, undisclosed ART use (detectable antiretroviral levels) was found in 52 (39%)
 Most commonly EFV, NVP, FTC, TDF

Moyo CROI 2018 #1255

Four Universal Test & Treat trials: What they tell us about HIV epidemic control in 2019

The following slides shared courtesy of:

BCPP (Ya Tsie)

Kathleen Wirth, Molly Pretorius Holme, Joseph Makhema, Kara Bennett, Jean Leidner, Max Essex, Jan Moore, and the BCPP team

Sponsors: PEPFAR, US CDC, Botswana Ministry of Health and Wellness

PopART

Richard Hayes, Helen Ayles, Sara Fidler, and the PopART team

Sponsors: PEPFAR, Bill and Melinda Gates Foundation, NIH

SEARCH

Diane Havlir, Maya Petersen, Moses Kamya, Laura Balzer, Gabe Chamie and the SEARCH team

Sponsors: NIAID, PEPFAR, Gilead Sciences, Ministers of Health in Uganda and Kenya TasPCollins Iwuji, Joseph Larmarange, Deenan Pillay,François Dabis and the TasP team

Sponsors: ANRS, GIZ, 3ie

Four Major Universal Test and Treat (UTT) Trials Community -randomized studies with HIV incidence endpoint

Four-UTT study slides courtesy of J Orne-Gliemann

Overall Design of the Four UTT Trials

- Community randomized trials, 2 arms (3 arms in PopART)
- Primary outcome: cumulative HIV incidence
- Average 30-36 months follow-up

	Ya Tsie Botswana	PopART Zambia + South Africa	SEARCH Uganda + Kenya	ANRS TasP South Africa
Number of clusters	30	SA: 9 Z: 12	U: 20 K: 12	22
Population of trial communities*	~105,000	~1,000,000	~334,500	~28,000
Population of primary outcome evaluation	~9,000	~33,000	~118,000	~17,600

* Eligible for trial interventions, both control and intervention arm

Main Interventions in the Four UTT Trials

	Intervo	ention	Control
Ya Tsie	Universal testing (F and targeted); ex ART; enh	nome-based, mobile kpanded/universal hanced MC	Per evolving national guidelines
PopART	Annual home- based HIV testing universal ART	Annual home- based HIV testing, ART per national guidelines	Per evolving national guidelines
SEARCH	Baseline and and campaign and ho univer Streamlined HI	nual multi-disease ome-based testing sal ART V and NCD care	Baseline home-based HTC; rest per evolving national guidelines
TasP	Home-base univer	Home-based HIV testing ART per national guidelines	

ART was delivered in Government/public facilities in all trials except TasP

Baseline HIV / ART Characteristics in the Four UTT Trial Populations

Age eligibility	16-64y	18-44y	<i>≥15y</i>	<i>≥15y</i>
criteria				
	Ya Tsie Botswana	PopART Zambia + South Africa	SEARCH Uganda + Kenya	ANRS TasP South Africa
HIV prevalence at baseline	29%	SA: 22% Z: 21%	U: 3-7% K: 20%	30%
ART coverage at baseline (% of <i>all</i> HIV+ on ART)	70%	SA: 29% Z: 38%	57%	38%

With UTT, >90% of all PLHIV were diagnosed (1 st 90)

- Achieved within 1-2 of years in some studies
- In a variety settingsurban and remote rural

*Intervention arms only. PopART Intervention arms combined

1st 90: Known HIV Status / All HIV+

With UTT, 3 of 4 studies started ART in ~90-97% (2nd 90)

- Rapid linkage and <u>much faster ART start</u> in intervention arms
- Low linkage in TasP,
 but ART initiation high
 once linked to clinics

*Intervention arms only. PopART Intervention arms combined

2nd 90: On ART/HIV Diagnosed

With UTT, all studies reached viral suppression ~90% if on ART (3rd 90)

*Intervention arms only. PopART Intervention arms combined

3rd 90: Virally suppressed/on ART

With UTT, 3 studies reached Population -level viral suppression >73%

- Dramatic increases in population viral suppression over short period of time
- From low (23%) or high
 (70%) starting point

*Intervention arms only. PopART Intervention arms combined

Population -Level Viral Suppression

Interventions effectively increased population level suppression in both men and women

*Intervention arms only. PopART Intervention arms combined

Population -Level Viral Suppression by Sex

Interventions showed variable gains in youth

- Suppression among youth still remains low in all studies
- > Due to new infections and worse ART uptake / outcomes

*Intervention arms only. PopART Intervention arms combined

Population -Level Viral Suppression: Youth

1. UTT rapidly achieved population -level viral suppression higher than current "Standard of Care" in most African countries

2. Achieved substantial increases in suppression among men and youth

Country VS Ref: El-Sadr, NEJM, 2019, and UNAIDS Report UTT: Makhema, NEJM, 2019;Hayes, NEJM, 2019; Havlir, NEJM, 2019

Population -Level Viral Suppression

Did implementation of UTT reduce HIV incidence in the four trials?

HIV Incidence findings

- Population-level outcome
- Reflect very short time frame of these trials (~3 years)

1. HIV incidence effect (~20 -30% reduction) observed when UTT compared to a control *without* universal testing (BCPP & PopART)

- 2. HIV incidence reduced (~30%) in *both arms* when control arm had universal testing (SEARCH)
 - 32% reduction observed between years 1 and 3 (SEARCH intervention arm)

Note: Impact of UTT intervention in trials setting (vs national -scale up) was almost certainly underestimated, due to mixing outside of intervention communities

Greater projected impact on HIV incidence if PopART intervention sustained over longer time (modeling)

PopART intervention was cost -effective – projections to 2030

• Cost of CHiPs intervention per capita \$5.10-\$8.20 per year

Country	Intervention scenario	Outcome averted	ICER range (US\$)
Zambia	PopART continued	Infections	1,427 - 2,673
	2014-30	DALYs	465 - 847
	PopART 2014-17	Infections	835 - 1,811
		DALYs	196 - 392
	PopART continued	Infections	2,324 - 4,712
South Africa	2014-30	DALYs	503 - 922
	$P_{00}APT 201/_17$	Infections	1,493 - 3,700
		DALYs	233 - 513

Should we do UTT? UTT teams' conclusion:

> Yes

- > UTT with Universal testing and linkage/rapid ART start represents an evidence-based means to rapidly and efficiently reduce incidence and mortality and puts <u>"Communities at the Center"</u>
- > Decline in incidence and mortality in UTT trials seen over a short time period → carried forward could have a large, long-term impact
- > The point of controversy for global health policy is universal testing, <u>not</u> universal treatment with rapid ART start

> But

- Appropriate scale for Universal Testing (national, sub-national, local) may vary depending on epidemic setting
- > Repeat testing is important and can to be tailored (many options)

> And

- > UTT alone, as done in these 1st generation studies, cannot achieve HIV epidemic control fast enough. However optimized UTT + additional prevention should speed epidemic control.
- > UTT may enhance delivery and serve as a platform for new prevention strategies & other public health priorities

Participants Study Team

<u>HSPH</u> Max Essex Shahin Lockman Kathleen Wirth Molly Pretorius Holme Eric J. Tchetgen Tchetgen Kara Bennett Jean Leidner Kathleen Powis Vlad Novitsky Scott Dryden-Peterson Victor DeGruttola Quanhong Lei Rui Wang Hermann Bussmann **Roger Shapiro**

Acknowledgements,

Ya Tsie

<u>BHP</u>

Joseph Makhema Mompati Mmalane **Tendani** Gaolathe **Etienne Kadima** Unoda Chakalisa Sikhulile Moyo Mosepele Mosepele Kutlo Manyake Coulson Kgathi Erik van Widenfelt Atang Mbikiwa Rona Letlhogile S. Vinoliah Simon Oaitse John Kutlwano Mukokomani Lillian Okui **Ria Madison**

<u>CDC</u>

Janet Moore Pamela Bachanas Lisa Block William Abrams Tafireyi Marukutira Lisa A. Mills Mary Grace Alwano Michelle Roland Connie Sexton Joseph Jarvis

<u>Botswana Ministry of</u> <u>Health and Wellness</u> Refeletswe Lebelonyane Shenaaz el-Halabi

CENTERS FOR DISEASE CONTROL AND PREVENTION

Thank you!

HIV incidence outcomes

Trial	BC	PP	PopART SEARCH		RCH	TasP			
Country	Bots	wana	South / Zan	Africa / nbia	Kenya /	Kenya / Uganda		South Africa	
Arm	С	Ι	С	I	С	I	С	Ι	
Universal testing	-	\checkmark	-	\checkmark	~	\checkmark	\checkmark	\checkmark	
Universal treatment	-	\checkmark	_/✓	_/ ✓	_/✓	\checkmark	-	\checkmark	
Population viral suppression									
- at start	75%	70%	52%	57%	42%	42%	26%	24%	
- at end	83%	88%	68%	74%	68%	79%	45%	46%	
- difference	+8	+18	+16	+17	+26	+37	+19	+23	
HIV incidence									
Annual incidence for 100 person-years	0.92	0.59	1.55	1.24	0.27	0.25	2.27	2.11	
Reduction (I vs C)	31% reduction		20% reduction		not significant, but 32% reduction in intervention arm between years 1 & 3		not significant		

Note:

both intervention arms were pooled for PopART.